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Time-resolved fluorescence anisotropy is an invaluable method for investigating the internal and
rotational dynamics of biomolecules. The range of rotational motions detectable by anisotropy decay
is limited by the fluorescence lifetime; typically, a depolarizing motion may be resolved if the
associated correlation time is between 0.1 and 10 times the intensity decay lifetime. To extend that
range and to improve the recovery of anisotropy decay parameters, a general analytical method has
been developed. This procedure utilizes a modification of Lagrange multiplier methods to constrain
the values of the iterated kinetic parameters during nonlinear least-squares analysis of anisotropy
decay data. The form of the constraint equation is derived from the classic relationship between
the decay parameters and the steady-state anisotropy, which can be simply and accurately measured.
Application of the constraint to analyses of synthetic data sets increased the accuracy of recovery
by decreasing the uncertainty in the iterated parameters. The constraint also enabled the accurate
recovery of correlation times that were a factor of 30 greater than the fluorescence lifetime, although
it did not improve recovery of correlation times that were much shorter than the lifetime. Using
this technique, it should now be possible to characterize the dynamics of larger macromolecules
and assemblies than those that can currently be studied by fluorescence anisotropy decay.

KEY WORDS: Fluorescence anisotropy decay; steady-state anisotropy; constrained optimization; Lagrange
multiplier method.

INTRODUCTION

Fluorescence anisotropy decay measurements can
provide information about both the rotational diffusion
and the internal dynamics of a biomolecule [1]. Such
measurements depend on the dynamic depolarization of
the fluorescence emission due to macromolecular rota-
tions, segmental motions, and local motions of the probe.
For a given depolarizing process to be observable, it must
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occur on a time scale similar to that of emission. If a
rotational correlation time associated with a particular
depolarizing process is much shorter than the fluores-
cence lifetime, the depolarization may be too rapid to be
resolved by current instrumentation. If the correlation
time is much longer than the lifetime, then the decay
of the fluorescence intensity will be complete before a
measurable amount of depolarization can take place.
Thus, the fluorescence lifetime limits the range of
dynamic processes that can be observed accurately by
anisotropy decay measurements [2].

A second limitation on the analysis of fluorescence
anisotropy data is the statistical cross-correlation between
the parameters iterated during data analysis [3]. This
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correlation arises from the mathematical form of the fit-
ting function, which is usually a product of two sums
of exponentials: one sum representing the fluorescence
intensity decay kinetics and the second sum the anisotropy
decay. Consequently, the uncertainties in the recovered
anisotropy parameters can be very large, hampering the
assignment of the correct depolarizing mechanism to the
observed kinetics. These uncertainties are particularly
great in cases where the ratio of the fluorescence lifetime
to the rotational correlation time is far from unity, i.e.,
in the two extreme situations discussed above. Therefore,
the range of correlation times that can be determined
accurately by fluorescence anisotropy decay has been
restricted to within the approximate limits 0.1 T < p <
10 T, where T is the fluorescence lifetime and 9 is the
correlation time [2].

To decrease the correlation between iterated parame-
ters, some investigators have attempted to constrain a
data analysis by using other types of information. Hydro-
dynamic calculation of rotational diffusion constants has
been used to predict the correlation time(s) due to global
rotational motion(s) of a macromolecule [4]. Sedimenta-
tion velocity experiments can provide translational diffu-
sion constants for a macromolecule, which can then be
used to calculate approximate molecular size, shape, and
rotational parameters [4]. Quantum mechanical calcula-
tion of the excitation and emission dipoles of the fluoro-
phore can help to predict limiting anisotropies [5]. For
systems with multiple fluorophores, anisotropy decay
data can be collected as a function of an independent
variable, such as excitation or emission wavelength, and
then analyzed globally for common rotational parame-
ters [6,7].

This work demonstrates the use of a novel constraint
for the analysis of anisotropy decays. This algorithm is
a general method that can be used to apply any mathemati-
cal relationship between iterated parameters as a con-
straint on an analysis. In this study, this method has been
applied to constraining the anisotropy decay analysis by
the value of the steady-state anisotropy. The steady-state
anisotropy of a sample can be precisely and accurately
measured and is related to the fluorescence intensity and
anisotropy decay parameters by a simple formula. This
quantity has been applied to constrain anisotropy decay
analysis previously [8], but the methods that have been
employed can introduce errors into the analysis (see Dis-
cussion). The novel algorithm that is presented here is
not subject to the limitations of these previous methods.
Simulation studies are presented demonstrating that this
constraint decreases the uncertainty in the iterated param-
eters and improves the accuracy of recovery of the param-
eters used for data generation. This improvement is

particularly dramatic for data sets in which the rotational
correlation time is much greater than the fluorescence life-
time.

THEORY

Time-resolved fluorescence data obtained by the
method of time-correlated single-photon counting
(TCSPC) can be analyzed by several techniques, includ-
ing nonlinear least squares (NLLS) [9], the method of
moments [10], and the Laplace transform [11]. For time-
resolved fluorescence data, NLLS has been shown to
recover parameters with the maximum likelihood of being
correct, provided that the proper theoretical model (fitting
function) of the decay kinetics is used [3]. The approach
described here is a modification of NLLS.

The objective of NLLS is to minimize x2 [12], the
weighted sum of the squared residuals for each data point:

Here a(t) is the statistical weight of xdala(t), which is the
value of the data at time t. Time-correlated single-photon
counting data inherently obeys Poisson statistics. There-
fore, for a large number of counts the distribution of
errors is well approximated by a Gaussian, and the statisti-
cal weight of each data point is the square root of the
number of counts. For TCSPC, the value of xfit(t) is
determined by the choice of the fitting function, the values
of the iterated parameters, and the convolution of the
analytic fitting function with a measured instrument
response function (IRF) to account for the finite time
response of the instrumentation.

To constrain an NLLS analysis by any additional
mathematical relationship between the iterated parame-
ters, the method of Lagrange multipliers may be applied.
This algorithm is similar to previously published methods
of restricted least squares, although these techniques have
not been applied to fluorescence decay before [13]. A
new minimization function, x2c' is generated by weighted
addition of a constraining function to Eq. (1):

Here K is a constant, and g is a constraint function. For
constraint by the steady-state anisotropy, g is defined as

where rss is the measured value of the steady-state anisot-
ropy and (r) is the value of the steady-state anisotropy
calculated from the iterated parameters. As the difference
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between the calculated and the measured steady-state
anisotropies increases, g becomes larger and x2c becomes
increasingly different from x2. The minimum of X2c with
respect to all iterated parameters is equivalent to the
minimum of x2 subject to the constraint that g is equal
to zero, i.e., the value of the steady-state anisotropy calcu-
lated from the iterated parameters is equal to the measured
value. An alternative description is that this point is the
minimum of the function in parameter space defined by
the intersection of the x2 hypersurface with the curve
g = 0 [13]. By requiring the minimum to lie on the
intersection of these two curves, the constraint decreases
the range of acceptable values of each iterated parameter.
Therefore, application of the constraint should reduce the
uncertainties in the iterated kinetic parameters. If the
value of rss is accurate, then decreasing the parameter
uncertainties will also increase the probability of recov-
ering correct values of the kinetic parameters from the
analysis.

The minimum value of x2c is obtained by finding
values of the n iterated parameters pi for which the deriva-
tive of x2c with respect to each is zero:

The multiplier K is analogous to a Lagrange multiplier,
in that it weights the contribution of the constraint term
to the minimization function. However, here K must be
a constant multiplier, whereas a conventional Lagrange
multiplier is a variable. The invariance of the multiplier
is a practical necessity due to the iterative nature of the
algorithms used to solve Eq. (4). In such algorithms, the
value of each iterated parameter is typically incremented
by some opi that depends on the partial derivative of
X2c with respect to pi.If K were a variable, the derivative
of x2c with respect to K would be g, which would always
be positive. Consequently, X2c would always decrease as
K decreased, and the value of a variable K would iterate to
zero. This solution is not acceptable, because it effectively
removes the constraint.

The value of K determines the weighting of the con-
straint term in Eq. (2) and, consequently, the stringency
with which the calculated steady-state anisotropy is con-
strained to approximate the experimentally measured
value. The theoretical basis for the choice of the fixed
value of K depends upon the uncertainty in the measured
value of rss [12]. The approximate range of acceptable
values of K may be inferred from the condition that both
the decay data and the steady-state anisotropy must con-
tribute significantly to the gradient of x2c near its mini-
mum. If K is too small, then the first term in the summation

in Eq. (4) will be much larger than the second term, and
the steady-state anisotropy will not apply a significant
constraint on the minimization. Alternately, if K is too
large, the first term in the summation will be much smaller
than the second term, and the decay data will not be fit
well. Numerically, for <r> to be constrained to within ±
dr of rss, the value of K must be sufficient that

when both are evaluated at the minimum of x2c. The
acceptable range dr can be determined from the experi-
mental uncertainty in rss. It is shown under Results that
the performance of the algorithm is insensitive to changes
in K over approximately five orders of magnitude.

Although the Lagrange multiplier method is
employed here to constrain by the steady-state anisotropy,
this algorithm has more general application. Any indepen-
dent mathematical relationship between the iterated
parameters may be applied as an analysis constraint, sim-
ply by changing the expression for g [Eq. (3)]. This
relationship may take any algebraic form, provided it has
a minimum at which the constraint is satisfied. In fact,
any number of constraints may be simultaneously applied,
each weighted by an appropriate Lagrange multiplier.

METHODS

Simulations

Fluorescence anisotropy decay data sets were syn-
thesized by a Monte Carlo algorithm as reported pre-
viously [14]; the noise generated by the algorithm obeys
Poisson statistics and thus is analogous to photon-count-
ing noise. Data were "collected" into 2000 channels with
a timing calibration of 22 ps/channel. The IRF was a
Gaussian with a full width at half-maximum of 300 ps.
For each data set, fluorescence decays were synthesized
to simulate data collected with vertically polarized excita-
tion and three emission polarizer angles: the magic angle
(M), vertical (V), and horizontal (H) [15]. The formulae
describing the decay kinetics at these three positions are
provided under Data Analysis, below. Synthesis of the
IRF was terminated when 100,000 counts had been col-
lected into the peak channel; those of the M, V, and H
fluorescence decays were terminated after 40,000 counts
had accumulated in the peak channel. The collection crite-
ria for the simulated data sets were based on those used
for actual TCSPC experiments.
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Data Analysis

Simulated anisotropy data sets were analyzed by an
investigator who was blinded to the values of the kinetic
parameters used to generate those data. Analysis was
performed by NLLS regression using a reconvolution
procedure [16]. The three curves that represented fluores-
cence decays of a single sample collected at M, V, and
H polarizer positions were analyzed to standard formulae:

where r0 is the limiting anisotropy, which is a function
of the excitation and emission transition dipoles. The
M, V, and H curves for a given data set were analyzed
simultaneously by a global procedure [4,17]. Goodness
of fit was assessed by the value of x2 (or x2c), the weighted
residuals, and the autocorrelation function of the resid-
uals.

The value of <r> was calculated to four significant
figures from the iterated parameters by the standard for-
mula [15]:

Constraint of data analysis by the steady-state anisotropy
rss was performed as described under Theory. For con-
strained analyses, the value of rss for each data set was
calculated from the generation parameters using Eq. (10).
The uncertainty of the provided steady-state anisotropy
(±0.0001) was smaller than that of a real experiment
by approximately an order of magnitude. This higher
precision was employed because these simulations were
designed as benchmark tests of the performance of the
constraint algorithm. In this way, the performance of the
algorithm could be evaluated as a function of several
independent variables in the absence of significant numer-
ical round-off errors. The effects of experimental impreci-
sion were subsequently determined by constraining
analyses with incorrect values of rss (see Results).

Parameter Uncertainties and Recovery of
Expected Values

Accurate determination of the uncertainties in the
parameters iterated during NLLS analysis must account

for the effects of statistical cross-correlation between
parameters. A standard procedure for estimating parame-
ter uncertainty that includes the effects of correlation is
as follows. Starting from the parameter values corres-
ponding to the minimum of x2, the value of the ith parame-
ter pi is changed by some 8pi. Now a new minimum of
X2 is found, allowing all parameters but pi, to vary. This
procedure is repeated for a variety of dpi,-, so that the rate
of increase of x2 with increasing dpi, can be determined.
The steepness of a plot of x2 vs dpi is an estimate of the
true uncertainty in pi, because it represents the rate at
which perturbations in this parameter decrease the good-
ness of fit. A rapid increase in x2 indicates that a parameter
is precisely determined, while a slow increase is indica-
tive of a large uncertainty in this parameter. By comparing
the slope of this curve between analysis protocols (such
as with and without the rss constraint), it is possible to
determine which protocol recovers kinetic parameters
with greater certainty. This procedure can be repeated for
all iterated parameters.

Unfortunately, the above analysis of uncertainties
is computationally expensive, because it requires many
minimizations to assess even a single parameter uncer-
tainty. Therefore, uncertainties have been determined in
this fashion only for a single synthetic data set (see
Results), as a benchmark test of the effect of the rss

constraint on the precision of recovered parameters. For
all other data sets, uncertainties were estimated by
repeating the analysis starting from three different sets
of initial guesses of the iterated parameters. The uncer-
tainty in a parameter will be approximately proportional
to the scatter in the values recovered from different ini-
tial guesses.

It is important to note that the majority of the uncer-
tainty in the kinetic parameters recovered from fluores-
cence decay data analyzed by NLLS arises from the
statistical cross-correlation between iterated parameters
[3]. The experimental imprecision in TCSPC data is quite
small, since the uncertainty in photon counts increases
only as the square root of the number of counts. Conse-
quently, the scatter in the values of parameters recovered
from multiple simulations of the same decay is typically
far smaller than the uncertainty arising from statistical
cross-correlation. Therefore, there is little extra informa-
tion obtained about parameter uncertainties from repeated
synthesis of a decay using the same generation parame-
ters.

For simulated data, it is also possible to evaluate
the accuracy with which analysis recovers the expected
values of the kinetic parameters that were used to generate
that data set. The error in a parameter is the difference
between the recovered value, piree, and the generation

where a is a scaling factor [1]. The function r(t) is the
fluorescence anisotropy decay:
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value, ptgen. For comparison of multiple analyses or multi-
ple data sets, it is useful to define a recovery parameter.

The recovery parameter R is a cumulative measure of the
deviations between all recovered parameters and their
expectation values. The recovery parameter is limited to
the range 0 < R < 1, with R = 1 indicating exact recovery
of all generation parameters, and R —> 0 fi —> oo. The
restricted range and simple interpretation of R make it a
useful metric for comparing the accuracy of multiple
analyses.

RESULTS

Recovery of Kinetic Parameters

To test the ability of the constraint algorithm to
improve the recovery of known kinetic parameters, a
series of synthetic anisotropy decays was generated using
a variety of fluorescence lifetimes, rotational correlation
times, and limiting anisotropies. The generation parame-
ters for these data sets are tabulated in Table I. In these
data, the ratio of the fluorescence lifetime to the rotational
correlation time (T/p) was varied in small increments
from 0.01 to 100. To achieve this large range, lifetimes
of 1 and 5 ns were used for T < d> and T > d, respectively.
Data sets with intermediate T/p ratios were generated
with both of these lifetimes to ensure that parameter
recovery did not depend on the value of the lifetime. For
each T/p ratio, data sets were generated for three limiting
anisotropies (r0 = 0.05, 0.15, or 0.3). The variation in
the values of limiting anisotropies and correlation times
was designed to determine the ranges of kinetic parame-
ters for which constraint by the steady-state anisotropy
could improve the accuracy of recovery.

Analyses performed without the rss constraint are
summarized in Fig. 1A. As expected, accurate parameter
recovery was achieved in the approximate range 0.3 T/p
T/p < 10, with the efficacy of the analysis decreasing
drastically beyond either end of this range. The recovery
was approximately the same for all limiting anisotropies
r0, except at very large T/p. For these very short correla-
tion times, the absolute effects of depolarization on the

Table I. Generation Parameters for Simulated Fluorescence
Anisotropy Decays

Data set

A
B
C                   1
D                    1
E                   1
F                   1
G                   1
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

AA
BB
CC
DD

T(ns)

1
1

1
1
5
5
5
5
5
5
1
1
1
5
5
5
5
5
5
5
5
5
5
5
5

d(ns)

100
100
100
30
30
30
10
10
10
50
50
50
15
15
15

1
1
1
5
5
5
0.5
0.5
0.5
0.15
0.15
0.15
0.05
0.05
0.05

B

0.05
0.15
0.30
0.05
0.15
0.30
0.05
0.15
0.30
0.05
0.15
0.30
0.05
0.15
0.30
0.05
0.15
0.30
0.05
0.15
0.30
0.05
0.15
0.30
0.05
0.15
0.30
0.05
0.15
0.30

<r>

0.0495
0.1485
0.2970
0.0484
0.1452
0.2903
0.0455
0.1364
0.2727
0.0455
0.1364
0.2727
0.0375
0.1125
0.2250
0.0250
0.0750
0.1500
0.0250
0.0750
0.1500
0.0045
0.0136
0.0273
0.0015
0.0044
0.0087
0.0005
0.0015
0.0030

T/d

0.01
0.01
0.01
0.033
0.033
0.033
0.1
0.1
0.1
0.1
0.1
0.1
0.33
0.33
0.33
1
1
1
1
1
1

10
10
10
33.3
33.3
33.3

100
100
100

V and H decays are numerically very small. Therefore,
the declining recovery with decreasing r0 in this range
probably indicates the presence of a critical threshold
below which the amplitude of depolarization is too small
to observe.

Analyses performed under the rss constraint are
shown in Fig. 1B. Application of the constraint signifi-
cantly improved parameter recovery for T/p < 0.3 (long
correlation times) and resulted in a more modest improve-
ment for T/p > 10 (short correlation times). At both
extremes, the recovery deteriorated in an r0-dependent
fashion.

Further examination of the analyses summarized in
Fig. 1 revealed two interesting points. First, the expected
value of the fluorescence lifetime T was successfully
recovered to within 0.03 ns for all analyses, regardless
of the value of p or the algorithm employed. Therefore,
the increases in R observed upon application of the rss

constraint represent more accurate recovery of r0 and p.
Second, the limited efficacy of the constraint at short

where fi is the fractional error in pi:
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100

Fig. 1. Recovery of iterated parameters for r0 = 0.05 (circle), 0.15 (square), and 0.30 (A). (A) Unconstrained
analyses; (B) constrained analyses, K = 108. Lines are drawn only to connect points and do not
represent any sort of theoretical fit to the data.

correlation times probably represents uncertainty in the
determination of rss. For these analyses, rss was accurate
to ±0.0001, but at the short p limit, this accuracy pro-
vided only one or two significant figures. Since realistic
experimental uncertainties are of the order of ±0.003, the
value of rss cannot be determined to sufficient accuracy to
constrain decay analyses for very short correlation times
and/or very small limiting anisotropies. Therefore, it is
concluded that the rss constraint improves the accuracy
of recovered parameters only in the range 0.01 < T/p <

0.3. Nevertheless, this range represents at least an order
of magnitude increase in the maximum observable corre-
lation time.

Uncertainty of Recovered Parameters

To test the hypothesis that the rss constraint decreases
the uncertainties in recovered parameters, the effect on
the goodness of fit of forcing T, r0, and tp away from
their optimum values was investigated. A single data set
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(E; Table I) was selected for which the rss constraint
significantly increased R. The minimum of x2c was found
while fixing each parameter successively at a series of
values T + dT, r0 + dr0, and cp + dp, as described under
Methods. The results for each of the three parameters
were found to be substantively the same for either positive
or negative dpi; consequently, only absolute values of dpi

are shown. Figure 2A shows that the uncertainty of the
recovered fluorescence lifetime did not change upon

application of the rss constraint. The goodness of fit,
represented by X2c rapidly decreased with even small
deviations from the optimum value of T. The indepen-
dence of the uncertainty in T on the method of anisotropy
decay analysis is to be expected, given that the fluores-
cence lifetime is determined largely from the magic angle
decay, which contains no information about depolarizing
processes. Figures 2B and C show that the rss constraint
dramatically decreased the uncertainty in r0 and p, respec-

Fig. 2. Parameter uncertainties without (•) and with (A) constraint (K = 108), for data set E. For
unconstrained analyses, x2 is plotted; for constrained analyses, x2c is plotted. (A) Uncertainty in T;
(B) uncertainty in r0; (C) uncertainty in <J>. Lines are drawn only to connect points and do not
represent any sort of theoretical fit to the data.
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Fig. 2. (Continued).

lively. In the absence of constraint, the values of these
parameters may be doubled with little reduction in the
goodness of fit. In the constrained analysis, the uncertaint-
ies in these parameters are significantly smaller, although
they are still much larger than that of the fluorescence
lifetime. In both constrained and unconstrained analysis,
forced perturbation of tp from its optimum value always
resulted in a compensatory change in ro, and vice versa.
These compensatory changes represent the statistical
cross-correlation between the two parameters. However,
the rss constraint significantly decreased the amplitude of
the compensatory change, implying that the parameter
correlation was weakened. Therefore, it is concluded that
application of the rss constraint decreased the uncertainty
of recovered kinetic parameters in the regime where
p >>T. This type of error analysis was not performed
for the cases p = T or cp << T, because the rss constraint
did not increase the accuracy of parameter recovery in
these circumstances.

Effects of an Incorrect Constraint

In each of the above simulation studies, the value
of rss used in evaluating the effects of constraint on the
recovery and the uncertainty of kinetic parameters was
the value calculated from the generation parameters.
However, in a real experiment, the determination of rss

is subject to some degree of experimental imprecision.
Therefore, the effects of applying an incorrect rss as an
analysis constraint were investigated. Two data sets were
selected for this analysis: one (T; Table I) for which

p = T and one (E; Table I.) for which p >> T. Thus,
the effect of an incorrect constraint could be evaluated
both under conditions in which a correct constraint
improved parameter recovery and those in which it did
not. The results are shown in Fig. 3. For both data sets,
increasing drss resulted in a decrease in the recovery
parameter R. The effects of positive and negative drss

were approximately the same. However, a relatively large
drss was required to diminish significantly the accuracy
of recovered parameters. Both data sets had acceptable
R values (>0.9), even for conservative estimates of exper-
imental imprecision (8rss < ± 0.01). It is concluded
that the improvement in parameter recovery due to the
constraint is essentially insensitive to realistic experimen-
tal uncertainty in the steady-state anisotropy.

The effect of an incorrect constraint on x2c was dra-
matically different for the two data sets. As Fig. 3 demon-
strates, there was a much larger increase in x2c with
increasing drss for 9 = T than for p >> T. This very
different behavior is the consequence of the much greater
uncertainty in the longer correlation time. When p = T,
the value of p is very precisely determined from the decay,
and consequently any error in rss results in a decrease in
the goodness of fit. When p >> T, the value of p is
poorly determined from the decay, and a wide range of
values of rss is consistent with a good fit. Therefore,
an incorrect constraint will not result in a statistically
unacceptable fit for the case p >> T. Because the true
kinetic parameters are unknown for experimental data, it
will be impossible to detect a bad constraint from the
decay analysis when p >> T. However, a data set for
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Fig. 3. Recovery of iterated parameters (•) and xj (^) with constraint by incorrect values of
rss (K = 108). (A) Data set T, T = 4>; (B) data set E, T « <t>. Lines are drawn only to connect
points and do not represent any sort of theoretical fit to the data.

which cp ==» T may serve as an adequate control for the
accuracy of the rss measurement, since in this case an
incorrect constraint should reduce the goodness of fit
noticeably.

Choice of Lagrange Multiplier

As stated under Theory, the value of K should be
determined by the uncertainty in rss. In practice, however,
other values may be acceptable. Criteria suggesting a
range of acceptable values of K [Eq. (5)] depend on the

partial derivatives of x2 and g with respect to the iterated
parameters /?,-. However, it is not generally convenient to
examine these derivatives during data analysis. Therefore,
it would be practical to determine the acceptable range
of K empirically based on the analysis of simulated data.
This analysis was performed for a single data set (E;
Table I) for which application of the constraint with K =
108 (see Fig. 1) had significantly improved parameter
recovery. Figure 4 shows the effects of changing K on R
and Xc f°r mis data set- The effect of the rss constraint
depended significantly on the value of K. For K ̂  103,
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Fig. 4. Recovery of iterated parameters (•) and XC2 (-^) vs the Lagrange multiplier for data set E.
Lines are drawn only to connect points and do not represent any sort of theoretical fit to the data.

R was small, indicating that the iterated parameters were
not well constrained, and the steady-state anisotropy, (r),
calculated from the recovered parameters was not equal
to rss (data not shown). As K was increased to 105, the
constraint on the iterated parameters gradually increased,
as evidenced by the increase in R. The full effect of the
constraint was manifested for 105 ^ K ̂  109, and (r)
was maintained equal to rss. For K > 109, the accuracy
of the recovered parameters decreased again. Moreover,
at these high values of the Lagrange multiplier, the good-
ness of fit deteriorated, as can be seen from the increase
in Xc in Fig- 4. These results are consistent with the
expectation that K must fall within a certain range to
constrain the data properly. If K is too small, the steady-
state anisotropy does not constrain the analysis; if it is
too large, the decay curve is not fit adequately.

The broad range of values—five orders of magni-
tude—of the Lagrange multiplier that provide both good
fits and accurate parameter recovery suggests that a
default value of K may be chosen confidently from the
middle of this range for subsequent analyses. A default
value of K = 108 is suggested. Moreover, these results
suggest simple criteria for changing K. if the constraint
does not maintain (r) equal to rss, then K should be
increased. If application of the constraint significantly
increases XC2, then K should be decreased. It should be
noted that an unacceptable x£ or {/•} may also indicate
that either the experimental value of rss or the kinetic
model used in data analysis is incorrect. These problems

are indicated if changing the value of K over several
orders of magnitude does not provide acceptable analyses.

DISCUSSION

Fluorescence anisotropy decay measurements are
practically limited by the statistical cross-correlation
between iterated kinetic parameters during data analysis.
We have developed a novel method of constraining the
iterated parameters in an NLLS analysis of fluorescence
anisotropy decay and employed it to constrain analyses
by the steady-state anisotropy. This method utilizes the
mathematical relationship between the kinetic parameters
and the steady-state anisotropy to restrict the search for
a minimum in parameter space. Application of this con-
straint to the analysis of synthetic data reduced the uncer-
tainty in the iterated parameters and increased the
accuracy of parameter recovery. This algorithm increased
by approximately an order of magnitude (from ~3r to
s30r) the maximum rotational correlation time that could
be resolved from simulated anisotropy decay data. This
advance should enable the measurement of the rotational
diffusion of larger macromolecules and assemblies than
formerly was possible. Experiments to test the utility of
constrained analysis on the anisotropy decay of proteins
and other biomolecules are currently in progress.

Three other algorithms have previously been devel-
oped to apply the steady-state anisotropy as a constraint
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on anisotropy decay analysis [8]. These methods each
rely on the fact that the integrals of the decay curves
measured at vertical and horizontal emission polarizations
can be related to the steady-state anisotropy via the famil-
iar definition

in which it is assumed that the steady-state fluorescence
intensity at each polarization is equal to the integral of
the respective decay. In the first algorithm, the vertical
and horizontal decays are collected for equal times, and
the steady-state anisotropy is calculated directly from the
integrals of these curves [8]. A problem arises with this
approach because the total photon flux is not the same
at the two polarizations, and therefore the vertical and
horizontal decays will not be collected to equal counts.
Because the uncertainty in the sum counts at each time
point is equal to the square root of the number of counts,
the uncertainties in the vertical and horizontal decay
curves are also unequal. Consequently, the two curves
are not equally weighted in the calculation of x2 [Eq.
(1)]. However, the two decay curves should be weighted
equally in the analysis, because each contains indepen-
dent and equally significant information. Unequal
weighting may change the values of iterated parameters
that maximize the goodness of fit and, thus, decrease the
accuracy of the recovered parameters.

In the second procedure, the M, V, and H curves are
collected to equal peak counts, and the latter two are
weighted to scale the ratio of their amplitudes to the
theoretically expected value [18]. The ratio of the scalars
which weight the vertical and horizontal decays is fixed
according to the measured value of the steady-state anisot-
ropy. The problem with this approach is that the scalars
do not directly constrain the kinetic parameters describing
the anisotropy decay but, instead, determine the ampli-
tudes of the convolved data curves. Therefore, the ratio
of the V and H scalars is not necessarily related to the
steady-state anisotropy in a simple fashion, because con-
volution may alter the relative integrals of the two curves.

In the third procedure, the M, V, and H decays are
collected to equal peak counts, and the ratio of V and H
scalars is estimated to be equal to the ratio of the intensit-
ies of these two curves at some time long after excitation
[19]. This method is based on the presumption that the
emission will be completely depolarized before the inten-
sity becomes undetectable, so that at the tail of the decay
curves the amplitudes of V and H are equal. This algo-

rithm is statistically flawed, because it relies on matching
the poorly determined tails of the decay curves. It is also
inapplicable to the case of d > T.

The algorithm that is presented here avoids the diffi-
culties involved in multiplying convolved data curves or
in tail matching, because it directly restricts the iterated
kinetic parameters that describe the anisotropy decay.
This procedure does not create unequal photon counting
uncertainties for M, V, and H decays and does not intro-
duce convolution artifacts into the constraint equation.
Unlike the earlier methods, the restriction that is applied
to the iterated parameters only depends on the anisotropy
decay model.

It has been suggested previously that fluorescence
correlation spectroscopy (FCS) could be employed to
measure rotational motions occurring much slower than
the decay of the excited state [20]. This approach was
initially demonstrated for bovine carbonic anhydrase B,
for which the mean rotational correlation time is approxi-
mately 10 times the lifetime of the extrinsic fluorescent
probe employed [21]. The limitations of this FCS method
are the use of flow conditions that would perturb the
rotational motion of asymmetric molecules, the need for
a large sample volume, long data collection times, exten-
sive data manipulation, and the ability to resolve only
the harmonic mean rotational correlation time. The
steady-state anisotropy constraint method presented here
to assist in extracting long correlation times from TCSPC
data avoids these complications.

The application of the Lagrange multiplier algorithm
to the analysis of fluorescence anisotropy decay is not
limited to constraint by the steady-state anisotropy. Any
additional information that restricts one or more kinetic
parameters can be incorporated into an analysis by use
of a suitable constraint equation and fixed Lagrange mul-
tiplier. For instance, if a fluorophore is subject to multiple
depolarizing motions, the anisotropy decay [Eq. (9)] is
multiexponential, and the limiting anisotropy r0 is the
sum of the preexponential factors. The value of r0 could
be determined independently (e.g., by measurement in a
highly viscous solvent) and applied as a constraint on the
sum of those preexponential factors. [It would also be
possible to constrain this type of analysis by iterating all
preexponential factors but one and calculating the final
one by subtraction of the others from r0. However, the
current algorithm is a more general method because it is
independent of any other constraint placed on the iterated
parameters.] Another possible application of the current
constraint method would be to do global analysis of fluo-
rescence decays. For example, consider macromolecules
that undergo complex assembly interactions. Decays col-
lected at different macromolecular concentrations could
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be analyzed globally, with the amplitudes associated with
various species constrained to follow the predictions of
a thermodynamic model of assembly stoichiometry and
energetics.

In conclusion, the results of any relevant physical
measurement or a particular relationship between parame-
ters may be applied as a constraint on the analysis by
the Lagrange multiplier method. This information should
enable more confident determination of kinetic models
for fluorescence decay and, consequently, improved
understanding of macromolecular dynamics.
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